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The demand for detailed airport surface and terminal airspace models is growing as
the scope and fidelity of air transportation system simulations expand. Currently, there
are few detailed airport surface models used in air transportation system simulation and
analysis, because the models are complex to develop and maintain. An improved method
of generating detailed models is required to expand the set of detailed airport surface and
terminal airspace models. In this paper, a means to automate the development of terminal
area node-link graph models is investigated. Geographic information system data were pro-
cessed through the geometric algorithms developed to capture the layout and connectivity
of runways and taxiways, and node-link graphs were created using this information. The
procedures were tested on about 80 US airports and proved to be robust and accurate.

Nomenclature

AR Effective aspect ratio
I Two-dimensional area-based moment of inertia, [m4]
N Number of vertices
R Earth radius, [m]
X,Y Centroid centered coordinates
C Connectivity matrix
I Moment of inertia tensor, [m4]
q Potential field induced by a unit vortex
r Position vector
v Principal direction, eigenvector
csij Element of C2

d Dimensional tolerance, [m]
x, y Coordinates

Subscripts
1, 2 Along major and minor principal axes
x, y Along x and y axes
cen Centroid

Conventions
Ni Node with index i
Pi Polygon with index i

Symbols
α,β Interpolation weights
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ε1 Non-dimensional tolerance in perpendicular direction
ε2 Non-dimensional tolerance in line segment direction
λ̄ Reference latitude, [rad]
λ Latitude, [rad]
φ Potential
τ Longitude, [rad]

I. Introduction

Most future air traffic concepts involve operations at higher terminal airspace and airport surface densities
to meet the expected growth in demand.1 Air transportation system simulations involving detailed

terminal areas and surfaces are necessary to assess these future concepts. These simulations will include
studies of individual airports2 as well as regional studies.3 All of them will require detailed surface and
terminal airspace models representing both current and future operating configurations. Because no two
airports are identical, proper analysis of a concept’s capabilities and benefits will require modeling operations
at many airports.

To simulate the movements of aircraft on the airport surface, it is convenient to use node-link graph
models, since the movements are constrained by the taxiways and runways. Modeling aircraft movements on a
node-link model makes it straightforward to determine separation between aircraft. Another benefit of graph
representation is that various depths of detail can be modeled depending on the simulation requirements.3

Developing, maintaining, and modifying even a small number of detailed terminal area node-link models
are significant tasks. Most existing detailed surface models are created manually by extracting the coordinates
of nodes from data sources such as aerial photography and connecting adjacent nodes with links. Atkins
et al.4 describe in detail such a manual model generation procedure for a surface simulation and decision
support tool.2

One of the few efforts to automate the surface node-link model generation process is found in Ref. 5.
In this work, a feature from the geographic information system data4,6 that represents the actual taxiway
centerlines is used to generate node-link models. Although this approach can result in accurate node-link
graphs, the taxiway centerline feature is not available for many airports, limiting the number of airports
that can be quickly modeled.

In the present study, procedures that automatically generate node-link graphs for airport surfaces are
developed. Geographic information system data of airports, mainly composed of polygons, are processed
through a set of geometric algorithms developed in this study. These algorithms capture the layout and
connectivity of runways and taxiways, which are the two primary elements of airport infrastructure. They
were used to successfully create node-link models for 77 of 78 airports in the data set.

The structure of this paper is as follows. In Section II, source data are described. Section III explains
the step-by-step procedures taken to automatically generate the surface node-link graph. Section IV shows
the automatically generated node-link graph of selected airports to demonstrate the effectiveness of the
procedures developed in this study and discusses issues and concerns. Section V concludes the paper. The
geometric algorithms are listed in the Appendix.

II. Airport Surface Information

Safe Flight 21 (SF21) is a program sponsored by the Federal Aviation Administration (FAA) to explore
and demonstrate the use of Automatic Dependent Surveillence-Broadcast (ADS-B) and other related tech-
nologies for use in the free flight concept of operations.6 As part of the SF21 project, the FAA created
digitized airport maps by processing aerial photography for about eighty airports to facilitate airport surface
automation.4

Among several available digitized map data, the SF21 data was chosen for the present study mainly
because many of the existing surface simulation and decision support tools2 are based on this data, and the
entire data set was readily available to NASA. Moreover, other commercial data sets such as Jeppesen Geo
Spatial Information Technology data were determined not to provide any notable advantage over the SF21
data for the purpose of this effort.

Safe Flight 21 data are a collection of polygons or lines categorized by different fields such as runway,
taxiway segment, taxiway guidance line, and other fields. Each polygon is represented by a list of latitude
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and longitude pairs for the vertices that define the polygon. Figure 1 shows the runway and taxiway polygon
representation of San Francisco International Airport (SFO).

Figure 1. Runway and taxiway polygons for San Francisco International Airport.

III. Procedures for Automated Node-Link Model Generation

Detailed procedures for automated node-link model generation are described throughout the following
subsections. The input data are pre-processed for better conditioning and defect corrections. Then, taxiway
polygons are processed for connectivity, and runway polygons are processed to find runway center lines. Next,
runway entry and exit nodes and links are created to construct the baseline graph. Finally, the baseline graph
is post-processed to adjust the node-link placements and to remove unnecessary node-links.

Figure 2. Two polygons are connected.

The core of the automated node-link generation process is
finding connectivity between polygons. Two polygons are con-
sidered to be connected if the polygons share a series of line
segments whose total length is longer than a predetermined
threshold. These shared lines will be referred as shared borders
in the following sections. If the two polygons are connected, a
node is created at the centroid of each polygon, and the two
nodes are connected by a link as depicted in Fig. 2.

III.A. Pre-processing

The original input data contain various defects that cause
many geometric algorithms to fail or run very slowly. By pre-
processing the data, significant portions of these problems can
be removed.

Each polygon is, first, examined for duplicated vertices,
which result in zero-length edges. If duplicated vertices are found from the vertex list, they are reduced
to a single vertex.

3 of 19

American Institute of Aeronautics and Astronautics



Highly clustered

vertices

Unnecessary

vertices dividing

straight edges

(a) Original polygon.

Number of

vertices is reduced

(b) Length filter is applied.

Unnecessary

vertices are

removed

(c) Angle filter is applied to (b).

Figure 3. Pre-processing.

Then, the polygon goes through an edge length filter, which constructs a new polygon by selectively
adding vertices from the original polygon. Vertices are selected such that the distance between any two
consecutive vertices is larger than the given minimum edge length. The original polygon is replaced by the
new polygon which, generally, has fewer vertices. Figure 3 (b) shows the result of the edge length filter
applied to the original polygon shown in Fig. 3 (a), displaying a significant reduction in the number of
vertices.

After the length filter is applied, an angle filter is applied to remove vertices which have an exterior angle
that is smaller than the threshold. This filter is used to remove unnecessary vertices that divide straight
edges into shorter edges. Figure 3 (c) shows the result of the angle filter applied to Fig. 3 (b).

The length and angle filters effectively reduce the number of vertices for faster processing, while retaining
the basic shape of the polygon. Threshold values are empirically determined to balance between vertex
reduction and shape retention. For the given data, 7 meters is used for the minimum edge length, and 1.5
degrees is used for the minimum exterior angle.

Borders are 

not aligned

Figure 4. Example of misalignment.

After all the polygons are conditioned, shared borders between polygons are examined to treat mis-
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alignments such as those shown in Fig. 4. As the connectivity algorithm searches for the shared borders
between two polygons, misalignment can cause the algorithm to miss the connectivity. Automatically treat-
ing misalignment is important because it is very difficult to detect the misalignment by visually inspecting
a graphical display. The neighborhood of each vertex is searched for other vertices. Vertices that are found
to be within a certain distance are consolidated to a single vertex.

III.B. Creating Node-Links for Taxiways

Figure 5 shows two examples of taxiway node-links generated by placing nodes at the centroids and connecting
them by links if the polygons are connected. Although the links do not exactly follow the centerlines of
the taxiways, the connectivity is correctly captured. As can be seen from Fig. 5, some of the nodes are
unnecessary. These nodes will be removed during the post-processing step later.

(a) (b)

Figure 5. Examples of taxiway node-links.

Some of the polygons are long and narrow, and often concave. In this case, putting a single node at the
centroid of the polygon can create node-links which significantly deviate from the actual taxi paths. Figure 6
(a) shows links that go out of the taxiway boundary. To mitigate this problem, polygons are divided until
they satisfy two criteria. The first criterion is that the effective aspect ratio of the polygon must be smaller
than the threshold. Effective aspect ratio is defined as the aspect ratio of the effective rectangle, which has
edge lengths and orientation such that its principal directions and the moment of inertias coincide with those
of the original polygon. The second criterion is called an interior condition, which means that the centroid
should be inside the polygon. Any polygon that does not meet both criteria is divided along the principal
axis that is associated with the largest moment of inertia. Figure 6 (b) shows an example of polygon division
and the resulting node-links.

Figure 7 describes the division process in detail. Figure 7 (a) shows a J-shaped polygon that does not
meet the interior condition. Figure 7 (b) shows it divided into two parts, along with its effective rectangle.
Figure 7 (c) shows the upper portion being divided because it violates the interior condition and the lower
part being divided because its effective aspect ratio is too large. Figure 7 (d) shows the original polygon
divided into four polygons. In real world example shown in Fig. 6, maximum effective aspect ratio is 4, and
the original polygon is divided into eight polygons.
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(a) Before division. (b) After division.

Figure 6. Polygons are divided to make the links follow the shape of the taxiway more closely.

(a) J-shaped polygon and
its centroid.

(b) Divided into 2 polygons
with effective rectangle over-
laid.

(c) Divided again. (d) Divided into 4 polygons.

Figure 7. Polygons division process.
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III.C. Identifying and Grouping Runways

The source data represent runways using single or multiple polygons. If a runway does not have any other
crossing runways, it is represented by a single rectangular polygon. However, if there are crossing runways,
two or more polygons are used to represent a runway, and these polygons are generally not rectangular.
Figure 8 shows the runway portion of the input data for Burbank, California’s Bob Hope Airport (BUR).
Polygon P1 and P4 represent Runway 15/33, and polygon P2 and P3 represent Runway 8/26.
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Figure 8. Example of crossing runways at Burbank, California’s Bob Hope Airport, (BUR).

To correctly group these polygons, a connectivity matrix, C, is constructed by the rule described in
Eq. 1. Runway polygons are considered to be connected if they share a vertex. This less strict connectivity
condition is used only for processing runways. For example, from the runway configuration shown in Fig. 8,
polygon P1 is connected to polygon P2 and P3. The completed connectivity matrix is shown in Fig. 8.

Cij =

{
0 if i = j or Pi and Pj are not connected
1 if Pi and Pj are connected

(1)

Each element, csij , of the square of the connectivity matrix, C2, indicates the number of polygons that
are connected to both polygon Pi and polygon Pj. An element along the diagonal of C2, csii, represents the
total number of polygons connected to polygon Pi. For example, if csii is zero, polygon Pi is a stand alone
runway.

To further process crossing runways such as the layout shown in Fig. 9 (a), a temporary node-link graph,
as shown in Fig. 9 (b), is created. A node, Ni, is placed at the centroid of runway polygon, Pi. Two nodes,
Ni and Nj, are connected by a link only if csij is equal to two, which means there are two polygons that are
connected to both polygon Pi and polygon Pj. This graph is used only for runway identification, thus it is
not related to the airport surface node-link graph.

Once the graph is constructed, the rank of each node is counted. Rank of a node refers to the number
of links attached to this node. If a node has a rank higher than two, all the link pairs are examined to find
the pair that forms a straight line. In the example shown in Fig. 9 (c), N4 has a rank of three. Among the
three possible link pairs, the link connecting N3 and N4, and the link connecting N4 and N5 form a straight
line. After this pair is found, other links are removed. In the example, the link that is connecting N4 and
N9 is removed. This procedure is repeated until none of the nodes has a rank greater than two, as shown in
Fig. 9 (e).
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Figure 9. Runway processes.
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The process separates the graph into a number of straight line graphs, and each graph represents a
runway. In the example shown in Fig. 9 (e), initial graph of Fig. 9 (b) is separated into four straight line
graphs. From the straight line graph, two end nodes are identified as shown in Fig. 9 (f), and, finally, two
polygons corresponding to the end nodes are wrapped around by a single rectangle as shown in Fig. 9 (g).
Runway centerline is identified for each runway using this rectangle, and nodes are placed at the runway
crossings.

III.D. Connecting Runways and Taxiways

After the taxiway node-link graph is constructed and all the runway centerlines are identified, runway entry
and exit nodes along the runway centerlines are generated. First, a taxiway polygon that is connected to a
runway polygon is identified. Then, the link ending at this taxiway polygon is extended towards the runway
centerline as shown in Fig. 10 (a). A node is placed at the intersection of the extension and centerline. This
method, called the primary method, is desirable because it generally preserves the runway entry and exit
angle. However, if only a single taxiway polygon is adjacent to a runway polygon or the link extension of
the primary method does not cross the runway centerline, a secondary method is applied. Connection to the
runway is made by creating a link from the centroid that goes through the mid-point of the shared border
as shown in Fig. 10 (b).

(a) Primary procedure (b) Secondary procedure

Figure 10. Creating runway entry and exit links.

As shown in Fig. 10 (b) and Fig. 11 (a), if a runway has entry and exit to both sides, two nodes are
generated along the runway centerline for each entry and exit. These nodes should be consolidated to a
single node as shown in Fig. 11 (b). Node consolidation is performed by checking the distance between
every pair of nodes along the runway centerline. If the distance is smaller than 50 meters, the two nodes are
consolidated to a single node by taking the mid point.

III.E. Post-processing

The node-link graphs created using the previously mentioned procedures capture the layout and connectivity
of taxiways and runways. However, they can be further improved by post-processing. First, some of the
nodes will be relocated from their initial location at the centroid to make the links follow the taxiway
centerlines more closely. Next, intermediate nodes will be removed to make the graph simpler without losing
any essential information.

Nodes are relocated using the readily identifiable centerlines of the rectangular polygons. First, each
polygon is examined to determine if it is a rectangle. Next, for every non-rectangular polygon, the number
of connected rectangular polygons is counted. If no rectangle is connected to this non-rectangular polygon,
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(a) Initial linking between taxiway and runway (b) Runway entry/exit nodes are consolidated

Figure 11. Consolidation.

the node remains at the centroid. If one connected polygon is rectangular, the centerline of the rectangle
is extended towards this polygon and the node is projected to this line as shown in Fig. 12 (a). If two
or more rectangles are connected, crossing angles between the extended centerlines are measured for every
possible pair, and the pair that forms an angle closest to 90 degrees is selected. This crossing point becomes
the new node location for the polygon as shown in Fig. 12 (b). Figure 13 shows real world examples of
rectangle-based correction.

(a) Only one adjacent polygon is a rectan-
gle.

(b) Two or more adjacent polygons are rectangles.

Figure 12. Post-processing: Rectangle based correction.

After the node positions are adjusted using the rectangle-based correction, the graph is simplified by
removing unnecessary nodes. If a node has only two connected links, and the exterior angle between the
links is smaller than a given tolerance, this node is removed and the two links are replaced with a single link.
An example of graph simplification for a typical airport is shown in Fig. 14. A tolerance angle of 15 degrees
is used for the actual computation.
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(a)

(b)

Figure 13. Rectangle based correction examples.
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(a) Before simplification (b) After simplification

Figure 14. Post-processing: Graph simplification by removing intermediate nodes.

IV. Results

The SF21 source data, provided 78 airport geometries. Node-link graphs were created for 77 airports
by applying the processes developed in this study. The remaining one airport that failed is discussed later
in this section. Among the 77 airports, three representative ones, Dallas Fort Worth International Airport
(DFW), Chicago O’Hare International Airport (ORD), and San Francisco International Airport (SFO) are
presented in this section.

Figure 15 shows the result for DFW. Red dots and lines denote nodes and links, while black lines denote
runway and taxiway outlines as described by the source data. This airport was chosen as the primary
test case because it has one of the most complicated taxiway networks among the US airports, and many
of NASA’s new air traffic concepts are tested on DFW. The data for DFW required very few corrections
through pre-processing. Moreover, the well structured taxiway layout enabled the rectangle based correction
algorithm to perform effectively.

Figure 16 shows the node-link graph for Chicago O’Hare International Airport (ORD). Contrary to DFW,
which is relatively new and designed with generous space, ORD represents a relatively old and complex
airport with limited space. While processing ORD, the moment-of-inertia based polygon division algorithm
was particularly useful, since many of the taxiway polygons were long, narrow, and concave.

San Francisco International Airport (SFO) is of medium complexity. However, the original data contains
many defects such as misalignments. San Francisco International Airport served as the main test case for
the runway processing algorithm since it has two pairs of parallel runways crossing each other. Figure 17
shows the result for SFO, which indicates that all the runways are correctly recognized and the defects were
effectively removed through the pre-processing.

There are two major concerns with the methods described in this study. One is related to the source
data, and the other is having many empirically determined tolerance values.

Although the processes generated accurate node-link graphs of 77 airports, the graphs are only as good
as the input data. The SF21 data were last updated in 2003, so any changes in the airport layouts after
2003 are not reflected. A separate tool that can manually edit the graph would be useful to make updates.

The quality of the node-link graphs depends on the quality and the consistency of the input data. For
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Figure 15. Node-link graph of Dallas Fort Worth International Airport.

example, node-link graphs could not be generated automatically for Albuquerque International Sunport
Airport (ABQ). It has three runways crossing at a single point as shown in the circled area of Fig. 18. The
runway processing algorithm described in Section III breaks down with this case.

As mentioned throughout Section III, numerous threshold values were introduced. These values are
highly dependent on the input data, so they were empirically determined for the given SF21 data. These
values should be adjusted accordingly if any other geographic information system data should be used.

V. Conclusions

In this study, automating the airport node-link graph model generation process was investigated. Geo-
metric algorithms were developed to manipulate the polygons provided by the source geographic information
systems data. Using these algorithms, node-link graphs of the airport surfaces were extracted by identifying
polygon connectivity. Among the 78 airports provided by the source data, node-link graphs for 77 airports
were created successfully. Resulting graphs accurately captured the connectivity and layouts of runways and
taxiways, which demonstrated the robustness of the automated procedures.

Node-link graphs created from this study can be used as the foundation for creating complete models
for terminal areas. Since the automation reduces the time and effort required for generating models, it will
enable simulations and analyses involving many airports, as well as the interconnecting network.

Appendix

In this appendix, geometric algorithms specifically developed for handling polygons and finding connec-
tivity are described in detail. Most of the algorithms are based on classical plane geometry.

Coordinate System and Projection

All of the airport surfaces were assumed to be locally flat within each airport. For each airport, runway
polygons are searched to find maximum and minimum latitudes. The average of the two latitudes becomes
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Figure 16. Node-link graph of Chicago O’Hare International Airport.
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Figure 17. Node-link graph of San Francisco International Airport.
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17/35

12/30

8/26

Figure 18. Runways at Albuquerque International Sunport Airport. Runway 3/21, 12/30, and 17/35 meet at a single
point.

the reference latitude, λ̄. All of the coordinates of vertices, which are originally expressed in latitude and
longitude pairs, are converted to plane coordinates using Eq. 2. Positive x direction points toward east and
positive y direction points towards north.

r = (x, y) =
(
Rτ cos λ̄, Rλ

)
(2)

Point and Line Segment Relation

Shared borders, which determines the polygon connectivity, are identified by testing all of the edges of one
polygon against the edges of the other polygon. If any two edges share a line segment, it becomes a part of
the shared border. Once all of these parts are identified, they are rearranged to form a series of line segments,
the shared border. When testing a pair of edges, the end points of one edge is examined to determine if they
lie on the other edge, and vice versa.

The geometric algorithm that determines if a point lies on a given line segment is the core algorithm,
which eventually leads to the connectivity between polygons. Any point, r, on a straight line going through
two points, r1 and r2, can be expressed as Eq. 3. If α is between zero and one, r lies on the segment.
However, this mathematical condition is seldom satisfied exactly in real world situations. It is necessary to
specify a region around the line segment as shown in Fig. 19. If a point is inside this region, the point is
considered to be on the given segment. For example, in Fig. 19, point r is on the segment while point r′ is
not.

r = (1− α) r1 + αr2 (3)

Equation 3 is relaxed to Eq. 4 where the weights, α1, α2, and β should satisfy the conditions given by
Eq. 5 and 6. The geometric tolerance, d, is translated to algebraic tolerance, ε1 and ε2, by Eq. 7 and 8. The
value of d is set to 0.5 meters.

r = β (α1r1 + α2r2) (4)

|α1 + α2 − 1| < ε1 (5)
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Figure 19. Determining if a point is on a given segment.

|β − 1| < ε2 (6)

ε1 = d
‖r2 − r1‖
‖r1 × r2‖

(7)

ε2 =
d

‖r2 − r1‖
(8)

where

r1 × r2 = x1y2 − x2y1 (9)

Centroid

If a closed polygon as shown in Fig. 20 is expressed by a sequence of points, r1, r2, ... , rN , rN+1 where r1

overlaps rN+1, the centroid can be computed by Eq. 10. Equation 10 is particularly convenient because it
does not matter whether the vertices are numbered in the clockwise direction or counterclockwise direction.

rcen =
∑N

i=1 (ri + ri+1) (ri × ri+1)

3
∑N

i=1 (ri × ri+1)
(10)

Moment of Inertia and Principal Axis

Principal axes for each polygon are computed to find effective aspect ratio and to divide polygons with
high effective aspect ratios. Area-based moment of inertias are computed to find principal axes. First, each
polygon should be translated such that the centroid becomes the origin as described in Eq. 11.

(Xi, Yi) = ri − rcen = (xi − xcen, yi − ycen) where i = 1, 2, . . . , N + 1 (11)

After the translation, moment of inertias are computed using Eqs. 12 through 14. Unlike the centroid,
the sign of moment of inertias are dependent on the direction that the vertices are numbered. If the vertices
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are numbered in a clockwise direction, signs on Ixx, Iyy, and Ixy should be reversed so that Ixx and Iyy are
always positive.

Ixx =
∫

S

y2dS =
N∑

i=1

1
12

(XiYi+1 −Xi+1Yi)
(
Y 2

i + YiYi+1 + Y 2
i+1

)
(12)

Iyy =
∫

S

x2dS =
N∑

i=1

1
12

(XiYi+1 −Xi+1Yi)
(
X2

i +XiXi+1 +X2
i+1

)
(13)

Ixy = −
∫

S

xydS = −
N∑

i=1

1
24

(XiYi+1 −Xi+1Yi) (2XiYi +XiYi+1 +Xi+1Yi + 2Xi+1Yi+1) (14)

Moment of inertia tensor, I, is constructed as shown in Eq. 15. Eigenvalues of I, I11 and I22, become the
moment of inertias along the principal directions,

(
v1x

, v1y

)
and

(
v2x

, v2y

)
respectively. These directions are

the corresponding eigenvectors.

I =

[
Ixx Ixy

Ixy Iyy

]
=

[
v1x

v2x

v1y v2y

][
I11 0
0 I22

][
v1x

v2x

v1y v2y

]T

(15)

Since the moment of inertias of a rectangle with width w, and height h are expressed as Eq. 16, the
aspect ratio, h/w, can be computed by Eq. 17.

Ixx = 1
12wh

3

Iyy = 1
12w

3h
(16)

AR =
√
I11
I22

(17)

Interior Condition

To determine whether a point is inside or outside the given polygon, a method based on potential theory is
used. For a potential field, q, the line integral around any closed curve depends on the number of singularities
enclosed by the curve. Using this idea, a singularity is placed at the point, and the line integral around the
given polygon is computed. This line integral is zero only if the point is outside the given polygon. If a
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unit vortex is assumed for the potential field as shown in Eq. 18, the line integral around a polygon can be
computed by using Eqs. 19 through 21.

q = ∇φ = ∇ 1
2πθ

(18)

∮
c

q · ds =
N∑

i=1

∫ ri+1

ri

q · ds (19)

∫ ri+1

ri

q · ds =
1

2π
E

2
D

(
tan−1 B + 2A

D
− tan−1 B

D

)
(20)

A = ‖ri+1 − ri‖2

B = 2ri · (ri+1 − ri)
C = ‖ri‖2

D =
√

4AC −B2

E = (ri × ri+1)

(21)
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